$224\left(\mathrm{M}^{\bullet+} 35\right), 206(45), 193(27), 178(87), 165(58), 164(100), 163$ (75), 149 (31), 148 (36), 121 (36), 105 (32), 91 (23), 90 (34), 79 (31), 77 (48), 76 (47), 51 (40), 39 (20); IR (neat) 3100 (br), 1730, 1600, 1590, 1475, 1440, $1265 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C}, 58.93 ; \mathrm{H}, 5.39$. Found: C, 58.75; H, 5.49.
tert-Butyl 4-(8'-Methoxy-3'-isocoumarinyl)-3-oxobutanoate (9b). tert-Butyl acetoacetate ($4.82 \mathrm{~g}, 30.5 \mathrm{mmol}$) was converted to the dilithium salt by addition to LDA (61 mmol) in THF (30 mL) at $0^{\circ} \mathrm{C}$. After $10 \mathrm{~min}, 10 \mathrm{mmol}$ of the sodium salt of ester 7 bb [generated by addition of $2.28 \mathrm{~g}(10 \mathrm{mmol})$ of the compound in THF (40 mL) to a suspension of NaH (15 mmol) in THF (50 mL)] was added. The suspension was stirred at ambient temperature for 12 h , acidified at $0^{\circ} \mathrm{C}$ to pH 5 with HOAc, and evaporated in vacuo. The residue was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and aqueous NaHCO_{3}. The aqueous phase was acidified with dilute HCl and extracted with $\mathrm{Et}_{2} \mathrm{O}$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were evaporated; the residue was treated with $\mathrm{Ac}_{2} \mathrm{O}(20 \mathrm{~mL})$ for 3 h at $25^{\circ} \mathrm{C}$, followed by $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ for 5 min at $50^{\circ} \mathrm{C}$. The solution was extracted with $\mathrm{Et}_{2} \mathrm{O}$; the organic solution was washed with aqueous NaHCO_{3} to remove HOAc and then dried and evaporated in vacuo. Flash chromatography ($50 \% \mathrm{EtOAc} /$ hexane) of the residue gave a fraction that yielded $0.742 \mathrm{~g}(22 \%)$ of 9 b as a yellow solid: mp 89-92 ${ }^{\circ} \mathrm{C}$ after recrystallization from $\mathrm{EtOH} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 1.47(\mathrm{~s}, 9 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 6.33(\mathrm{~s}$, $1 \mathrm{H}), 6.91(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.61(\mathrm{t}, 1$ $\mathrm{H}, J=7.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 27.65,46.55,49.91,55.98,82.04$, $106.31,108.75,110.10,117.25,135.67,139.41,150.08,158.48,161.29$, 165.63, 197.10; EI-MS, m / z (relative intensity) $332\left(\mathrm{M}^{+}, 1\right), 276$ (38), 258 (24), 216 (38), 190 (100), 161 (31), 59 (47), 57 (89), 43 (33), 41 (51), 39 (22); IR (KBr) 3965, 1730, 1710, 1600, 1570, 1480, 1330, 1250, $1150,1010 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}: \mathrm{C}, 65.05 ; \mathrm{H}, 6.07$. Found: C. $65.20 ; \mathrm{H}, 6.19$.

Anthrone Ester-Nitrile 32. Isocoumarin 9b ($0.332 \mathrm{~g}, 1 \mathrm{mmol}$) was added as a solid to a THF (25 mL) suspension of $\mathrm{NaH}(2 \mathrm{mmol})$ at -10 ${ }^{\circ} \mathrm{C}$; the suspension was stirred at $25^{\circ} \mathrm{C}$ until H_{2} evolution ceased (15 min). The resulting light yellow suspension of monoanion was added slowly to 4 mmol of trianion 18 in THF at $-78^{\circ} \mathrm{C}$. The mixture was stirred for 6 h at $-78^{\circ} \mathrm{C}$ and 12 h at $25^{\circ} \mathrm{C}$. The solvent was evaporated
in vacuo, and the residue was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and cold dilute HCl . The organic extract was evaporated in vacuo. Flash chromatography of the residue ($50 \% \mathrm{EtOAc} /$ hexane) gave a mixture of anthrone 32 and 3,5 -dioxohexanenitrile. Crystallization (EtOH) gave 25.8 mg (6%) of 32 as a dark red solid: mp (vac) $248-252{ }^{\circ} \mathrm{C}$ dec; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ a mixture of keto-enol tautomers $\delta 1.50(\mathrm{~s}, 9 \mathrm{H}), 3.82,3.90$, $4.04,4.19,4.28,4.32(6 \mathrm{~s}, 9 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{~m}$, $1 \mathrm{H}), 14.22(\mathrm{~s}, 1 \mathrm{H})$; EI-MS, m / z (relative intensity) $421\left(\mathrm{M}^{\bullet+}, 2\right)$, 56 (47), 44 (52), 41 (100), 39 (36); IR (KBr) 3350, 3000 (br), 2240 (w), $1720,1655,1620,1575,1560,1510,1440,1365,1280,1235,1150,1090$, $960 \mathrm{~cm}^{-1} ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }} \mathrm{nm}(\epsilon) 432$ (3100), 408 (5200), 384 (8900), 366 (6200), 296 (13200 , sh), 266 (30900), 253 (41700), 230 (23 400). The parent ion in the mass spectrum was too weak for exact mass measurement.

1,3,10,11,12-Pentahydroxynaphthacene-2-carboxamide (Pretetramide, 1). Anthrone 32 ($25.8 \mathrm{mg}, 0.061 \mathrm{mmol}$) was combined with $\mathrm{HI} / \mathrm{H}_{2} \mathrm{O}$ ($47 \%, 1 \mathrm{~mL}$) and phenol (2 mL) and refluxed for 5 h . The solution was cooled; an orange solid (1.8 mg , which gave no mass spectrum) was removed by filtration. The filtrate was evaporated in vacuo and refluxed again with $\mathrm{HI} / \mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and phenol (3 mL) for 12 h . The black solution was stored at ambient temperature for 10 h ; pretetramide ($1 ; 3.8$ $\mathrm{mg}, 18 \%$) was collected by filtration: mp (vac) $294-305^{\circ} \mathrm{C} \mathrm{dec}$ (lit. ${ }^{30}$ $323-327^{\circ} \mathrm{C} \mathrm{dec}$, lit. ${ }^{28} 290-320^{\circ} \mathrm{C} \mathrm{dec}$); EI-MS, m / z (relative intensity) 351 (${ }^{\circ++}, 42$), 335 (21), 334 (100), 308 (24); IR (Nujol) 3200 (br), $1660,1630,1595,1575,1410,1348,1290,1170,1080 \mathrm{~cm}^{-1}$; UV $\left[\mathrm{H}_{2} \mathrm{SO}_{4} / 0.1 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{3} \mathrm{BO}_{3}\right] \lambda_{\max } \mathrm{nm}(\epsilon) 499$ (10500), 405 (14500), 307 (28200), $290(27500), 269(23400), 239(21900)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{NO}_{6} \mathrm{~m} / \mathrm{z} 351.0743$, found $m / z 351.0752$.

Acknowledgment. We wish to acknowledge preliminary experiments by Dr. A. D. Webb and to thank Drs. B. Sweetman and I. Blair for mass spectra and the US Public Health Service (Grant GM-12848) for generous support of this research.
(30) Murphy, J. A.; Staunton, J. J. Chem. Soc., Chem. Commun. 1979, 1166.

Biomimetic Syntheses of Pretetramides. 3. Synthesis of 6-Methylpretetramides Using a Preassembled D Ring Template

Thomas M. Harris,* Constance M. Harris, Peter C. Kuzma, John Y.C. Lee, Sankaran Mahalingam, and S. Gordon Gilbreath

Contribution from the Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235. Received January 11, 1988

Abstract

A modification of the biomimetically engineered [$5+(2 \times 2)+1]$ route to pretetramide (3) described in the previous paper has been employed for the synthesis of 6 -methylpretetramide (1). Tandem condensations of phthalide $\mathbf{6 b}$ with tert-butyl acetoacetate dianion produced a bisadduct, which underwent aldol cyclizations during workup to give anthrone 7b. Reduction of the anthrone using tritethylsilane in trifluoroacetic acid with simultaneous tert-butyl ester cleavage gave the corresponding anthracene diacid, which due to tts instability was methylated with dimethyl sulfate to give the trimethoxy dimethyl ester $\mathbf{8 b}$. Selective hydrolysis of the aliphatic ester group of $\mathbf{8 b}$ gave ester-acid 15a. Condensation of $\mathbf{1 5 a}$ (as its sodium salt) with the dilithium salt of N-(trimethylsilyl)acetamide, followed by esterification with diazomethane gave β-keto amide 14a. Cyclization of ring A and deprotection of the phenols to produce 6 -methylpretetramide (1) were accomplished by using a refluxing mixture of hydriodic and acetic acids. 10-Dehydroxy-6-methylpretetramide (12) and 8 -hydroxy-6-methylpretetramide (4) were synthesized by similar sequences.

6-Methylpretetramide (1) is a naphthacenecarboxamide the biosynthetic intermediacy of which was demonstrated by McCormick and co-workers in a blocked mutant of the organism that produces the antibiotic tetracycline (2). ${ }^{1}$ 6-Methylpretetramide has been prepared by degradation of $2^{1.2}$ and by Barton et al. in a thwarted attempt to carry out a de novo synthesis

[^0]of $\mathbf{2} .^{3}$ In the first two papers of this series, ${ }^{4.5}$ pretetramide (3) was prepared by biomimetic routes via what we term [$3+(2 \times$ 2) $+1+2]$ and $[5+(2 \times 2)+1]$ strategies (Scheme Ia-b), the latter being based on elaboration of two ketide chains from the ester groups of dimethyl 3 -methoxyhomophthalate. In the present paper the $[5+(2 \times 2)+1]$ route has been adapted to allow introduction of the methyl group found in 6-methylpretetramide. ${ }^{6}$

[^1]
Scheme I

Scheme II

The new strategy has also been applied to a synthesis of 10 -dehydroxy-6-methylpretetramide (12) and 8-hydroxy-6-methylpretetramide (4).

2

Results and Discussion

Phthalide esters 6 can be viewed as synthetic equivalents of the homophthalates employed in the prevtous paper. They are attractive intermediates for introduction of the methyl group found in the 6 -methylpretetramides; use of 6 in subsequent condensations avoids the complications caused by the readily tonizable α protons

[^2]

Figure 1. Coupling and nuclear Overhauser effects in anthracene 8a.
Scheme III

of homophthalate esters. ${ }^{7}$ Model studies were initiated with phthalide 6a, which was prepared in 53% yield by treatment of phthalide (5a) with 2 equiv of lithium disopropylamide followed by methyl chloroformate and then iodomethane in a one-pot reaction (Scheme II).

Tandem addition of the dilithium salt of tert-butyl acetoacetate (4 equiv) to the two ester groups of 6a gave anthrone diester 7a (Scheme II). The use of tert-butyl acetoacetate dianion as the nucleophile minimizes self condensation of the keto ester, which presents a serious problem with less hindered esters. Four equivalents of keto ester dianton are stoichtometrically required in this reaction, two for the condensations themselves and the other two for ionization of the newly formed acidic methylene groups. ${ }^{8}$ The initial product of biscondensation, a bis(3,5-diketo ester) underwent two intramolecular aldol cyclizations during workup to give anthrone 7 a in an overall 66% yield. ${ }^{9}$ A linear folding pattern to give 7a was established spectroscopically; in particular, the infrared spectrum showed intramolecular hydrogen bonding to the anthrone carbonyl group ($1620 \mathrm{~cm}^{-1}$) and the ${ }^{1} \mathrm{H}$ NMR spectrum contained a hydrogen-bonded OH signal at 12.92 ppm . Other folding patterns are thereby excluded.
The next step in the synthesis was reduction to the anthracene by triethylsilane in trifluoroacettc acid. Although the anthrone 7a is stable as a crystalline solid at room temperature, the corresponding 9 -hydroxyanthracene and the tautomeric anthrone are highly vulnerable to air-oxidation. Consequently, the crude reduction product was immediately converted to the permethylated derivative by treatment with dimethyl sulfate and potassium carbonate. The two-step sequence gave anthracene diester 8a in 63% yield. The acidic reaction conditions used to achieve anthrone reduction and dehydration also catalyzed hydrolysis of the tertbutyl esters, and the resulting carboxyl groups were converted to methyl esters during treatment with dimethyl sulfate. The structure of 8 a was established by careful analysis of the ${ }^{\text {t }} \mathrm{H}$ NMR spectrum, which showed (1) coupling between the methylene group at C-3 and H-4 and (2) nuclear Overhauser effects between the methyl group at $\mathrm{C}-10$ and protons $\mathrm{H}-4$ and $\mathrm{H}-5$ as shown in Figure 1.

The dianion of N-(trimethylsilyl)acetamide ${ }^{10}$ was employed to complete construction of the skeleton of 6 -methylpretetramide;

[^3]this acetamide synthon had worked well in the synthesis of pretetramide described th the previous paper in this series. The labile methylene position was tontzed (using lithtum dtitsopropylamide) prior to the condensation in order to block nucleophilic attack on the aliphattc ester group and thereby to direct reaction to the aromatic ester. ${ }^{5}$ Condensation of $\mathbf{8 a}$ monoanton with dilithio N-(trimethylsilyl)acetamide gave β-keto amide 9 in 22% yield (Scheme III). The structure of the adduct was established spectroscopically. Evidence that the condensation had proceeded via attack on the aromatic ester rather than the altphatic one was obtained from the IR and ${ }^{13} \mathrm{C}$ NMR spectra, which indicated the presence of an aromatic keto group. The close correspondence of the spectra of 9 to its 6 -demethyl counterpart in the accompanying paper ${ }^{5}$ gives further credence to the structural assignment.

Acid-catalyzed Clatsen closure of the ftnal ring has proven to be an effective method for completion of the naphthacene nucleus of pretetramides with simultaneous demethylation of the phenolic ethers. ${ }^{4,5}$ McCormick et al. had used HI to effect the closure of ring A and to reduce the quinone motety of protetrones 10 and 11 to give pretetramide (2) and 6-methylpretetramide (3), re-

11
spectively; the protetrones had been isolated from blocked mutants of tetracycline-producing organisms. ${ }^{1 t}$ Actd-catalyzed closure of ring A and phenol deprotection were accomplished with a mixture of refluxing acetic and hydrobromic acids to produce crystalline 10-dehydroxy-6-methylpretetramide (12) in 82% yield Because of the meager solubility of $\mathbf{1 2}$ in organtc and aqueous solvents, NMR spectra could not be obtained. The product was identifted on the basts of the close similarity of its ultraviolet spectrum with that reported for 6-methylpretetramide. ${ }^{2 \mathrm{a} .3}$

The success of the model synthests of 10 -dehydroxypretetramide inspired confidence that the same sequence could be applied to obtain 6-methylpretetramide itself. Toward this goal phthalide $\mathbf{6 b}$ was synthesized from 7-methoxyphthalide (5b) (Scheme II). ${ }^{12}$ Carbomethoxylation and methylation of 7 -methoxyphthalide proceeded as in the model synthests to give phthalide ester 6b in 70% yteld.

Phthalide 6b was subjected to tandem attack by the diantion of tert-butyl acetoacetate to give anthrone 7 bb in 57% yteld. A major byproduct of the reaction was tentatively identifted as monoadduct 13a arising from nucleophilic attack of tert-butyl acetoacetate dianion on the aliphatic ester group. Anthrone 7b was reduced with triethylsilane and methylated with dimethyl sulfate to give trimethoxyanthracene $\mathbf{8 b}$ in 66% yield.

The anion of $\mathbf{8 b}$ was treated with the dianion of N -(trimethylsilyl)acetamide to form 14a; however, the reaction failed
(11) (a) McCormick, J. R. D.; Jensen, E. R. J. Am. Chem. Soc. 1968, 90 , 7126. (b) McCormick, J. R. D.; Jensen, E. R.; Arnold, N. H.; Corey, H. S.; Joachim, U. H.; Johnson, S.; Miller, P. A.; Sjolander, N. O. J. Am. Chem Soc. 1968, 90, 7127.
(12) (a) Trost, B. M.; Rivers, G. T.; Gold, J. M. J. Org. Chem. 1980, 45, 1835. (b) We are grateful to C. A. Townsend for this suggestion.

Scheme IV

to produce useful quantities of the adduct. A complex mixture of products resulted, probably stemming from nucleophilic attack occurring in part at the aliphatic ester group. The apparent cause of the problem is the increased electron density of $\mathbf{8 b}$ relative to 8a due to the additional methoxyl group. As an alternative approach, the aliphatic ester group of $\mathbf{8 b}$ was converted to the carboxylate anton prior to the condensation (Scheme IV), thus eliminating the requirement for preionization of the methylene group. It should be noted that ionization of the methylene group in anthracenes 8 will deactivate the aromatic ester group to nucleophilic attack as well as the aliphatic one but to a lesser extent. Limited alkaline hydrolysis of $\mathbf{8} \mathbf{b}^{13}$ with methanolic KOH gave ester acid $15 a$ in 85% yield.

The sodium salt of 15a was then treated with N-(trimethylsilyl)acetamide dianion to give the corresponding β-keto amide, which was more conventently isolated as methyl ester 14a than as the free acid; the ester was formed by brief treatment with diazomethane (Scheme IV). The yield for conversion of 15a to 14a was 25%. The ftnal ring closure was effected with a refluxing mixture of hydriodic and acetic acids; 6-methylpretetramide (1) was obtained in 50% yield as a brick red solid, the physical and spectroscopic properties of which closely matched those reported for the compound. ${ }^{2 a, 3}$

The synthesis of 8 -hydroxy-6-methylpretetramide (4) parallels that described for 6 -methylpretetramide (Schemes II and IV). 5,7-Dimethoxyphthalide (5 c) was prepared from commercially available 3,5 -dimethoxybenzyl alcohol in 69% yield by a modification of Trost's method. ${ }^{12}$ Conversion of phthalide 5 c to the 3-methyl-3-carbomethoxy analogue by "one-pot" methylation and acylation with methyl chloroformate occurred in 60% yield; a byproduct, identified as the unacylated methyl derivative (16),

16
was also isolated. Attempts to carboxylate 16 to give 5 c were unsuccessful. Tandem addition of tert-butyl acetoacetate dianton to $6 \mathbf{c}$ proceeded smoothly to give anthrone 7 c in 63% yield. A signtftcant amount (25%) of monoadduct 13b was also tsolated. tert-Butyl acetoacetate dianion failed to convert 13b to the bis(adduct) even under vigorous reaction conditions; the sodium salt of 13b (preformed with excess sodium hydride) also failed to acylate the dilithium salt of tert-butyl acetoacetate. ${ }^{14}$

Reduction and aromatization of anthrone 7 c were effected using triethylsilane and trifluoroacetic acid; methylation gave anthracene 8 c in 22% overall yield. This methylation is senstitve to experimental conditions. Vigorous mechanical stirring throughout the reaction and the use of only freshly distilled dimethyl sulfate are critical. Anthracene 8 c was relatively stable as a solid, but was

[^4]susceptible to oxidation when not crystalline. A byproduct (16%) from the reaction sequence was identifted as mixed tert-butyl methyl diester 17, in which cleavage of the aliphatic tert-butyl group had failed to occur. Further treatment of the mixed ester with trifluoroacetic actd gave ester acid $\mathbf{1 5 b}$ (58%), identical with material made by limited hydrolysis of dimethyl ester 8 c with methanolic KOH .

Neither dimethyl ester 8c nor tert-butyl methyl diester 17 reacted with the dilithium salt of N -(trimethylsilyl)acetamide to give isolable quantities of the corresponding β-keto amide. Es-ter-acid 15b was converted to its carboxylate sodium salt and treated with excess N-(trimethylsilyl)acetamide dianton. Am-ide-ester $\mathbf{1 4 b}$ was isolated from the product mixture in 26% yteld, after brief treatment with diazomethane. In addition, 24% of dimethyl ester 8 c , the methylation product of unreacted ester acid $\mathbf{1 5 b}$, was obtained. Treatment of amtde-ester $\mathbf{1 4 b}$ with refluxing hydriodic and acetic acids gave 53% of 8 -hydroxy- 6 -methylpretetramide (4). A major byproduct (33% yield) was identifted as anthrone 18 in which the keto amide chatn and the O-methyl groups have been lost.

In summary, 10 -dehydroxy-6-methylpretetramide (12), 6 methylpretetramide (1), and 8-hydroxy-6-methylpretetramide (4) have been synthesized from phthalides by a biogenetically modeled route in yields of $4.0,3.3$, and 2.1%, respectively. Only 1 has been synthesized previously; to the extent that yields can be ascertained from the literature reports, ${ }^{2 a, 3}$ the yield of the present procedure for 6 -methylpretetramide compares favorably with the earlier de novo and degradative routes.

Our interest in 8 -hydroxypretetramides stems from the question of when reduction at C-8 occurs. ${ }^{116 . t 5}$ Does the reduction occur while the polyketide chain exists as a linear enzyme-bound complex or at an intermediate stage of cyclization or after formation of the pretetramide? The first process would involve reduction of a ketone to an alcohol followed by dehydrative elimination of the resultant hydroxyl group. Many aromatic polyketide-derived natural products that lack an oxygen atom at the analogous "corner" postion are believed to arise in this manner, one wellstudied example being 6 -methylsalicyclic actd. ${ }^{16}$ The alternative possibility, loss of the hydroxyl group after aromatization, has been established for the biosynthesis of chrysophanol (19a) from emodin (19b). ${ }^{17}$

19a, $R=H$
$b, R=O H$

[^5]The stage at which the hydroxyl is lost in the tetracycline pathway is unknown beyond the fact that it lies prior to 6 methylpretetramide. Concetvably, the process involves dehydroxylation of 8 -hydroxy-6-methylpretetramide (3); the present synthesis of 3 , which could readily be adapted to incorporation of isotopic labels, paves the way for the appropriate metabolic studtes to test this question. Loss of the hydroxyl group could well occur at the tricyclic stage. McCormick's protetrones 10 and 11 failed to be transformed to tetracyclines by tetracycline-producing organisms, possibly because they are oxidation products of the putative true protetrone intermediates $20 \mathrm{a}, \mathrm{b}^{11}$ The present synthesis of 8 -hydroxy-6-methylpretetramide passes through protetrone $\mathbf{1 4 b}$, which is the methyl ester, tetramethyl ether of 20c. Modifications of the syntheses reported in this paper may make it posstble to synthesize protetrone 20 c as well as 20a and $\mathbf{2 0 b}$ by using more labile protective groups such that their removal can be effected without simultaneous closure of the final ring. It is interesting to note that loss of the 8 -hydroxyl group is not mandatory for biosynthesis of the naphthacene ring system; recent reports have described isolation of several 8-methoxytetracyclines. ${ }^{18}$

$$
\begin{aligned}
20 \mathrm{a}, R_{1} & =R_{2}=H \\
b, R_{1} & =\mathrm{Me}, R_{2}=\mathrm{H} \\
c, R_{1} & =\mathrm{Me}, R_{2}=\mathrm{OH}
\end{aligned}
$$

Experimental Section

General Procedure. The general procedures described in paper one of this series were employed. ${ }^{4}$ Additionally, diazomethane was generated from Diazald (Aldrich) by using the procedure printed on the container. Dichloromethane when used as a reaction solvent was first distilled from calcium hydride. tert-Butyl acetoacetate (Aldrich) was distilled at reduced pressure and was stirred under vacuum for at least 30 min prior to use. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 90 and 22.5 MHz , respectively, unless otherwise indicated.

Preparation of 3-Carbomethoxy-3-methylphthalides 6. Treatment of phthalide $5(3.3 \mathrm{mmol})$ with 2 equiv of LDA (6.6 mmol) in 100 mL of THF at $-78^{\circ} \mathrm{C}$ under N_{2} gave the yellow anion, which after 15 min was treated with 1 equiv of freshly distilled methyl chloroformate (0.32 g , $3.30 \mathrm{mmol})$. After an additional 1 h , iodomethane ($1.87 \mathrm{~g}, 13.19 \mathrm{mmol}$) was added, and the mixture was heated at $35-40^{\circ} \mathrm{C}$ for 8 h . The mixture was filtered, and the filtrate was evaporated in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cold dilute HCl . The aqueous layer was further extracted with EtOAc . The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and EtOAc extracts were combined and evaporated to give 6 as an oil, which was purified by chromatography on silica gel.

Phthalide 5a ($6.7 \mathrm{~g}, 50 \mathrm{mmol}$) was converted to 6 a according to the general procedure. The crude product was purified by short-column chromatography ($\mathrm{Et}_{2} \mathrm{O}$) and then recrystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane/ CHCl_{3} to give $5.50 \mathrm{~g}\left(53 \%\right.$ yield) of $6 \mathrm{a}: \mathrm{mp} 57-58^{\circ} \mathrm{C}$ (lit. ${ }^{19} \mathrm{mp} 57-58$ ${ }^{\circ} \mathrm{C}$) ; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $7.50-8.10(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 23.6\left(\mathrm{CH}_{3}\right), 53.2\left(\mathrm{OCH}_{3}\right)$, $84.8(\mathrm{C}-3), 122.1(\mathrm{CH}), 125.1(\mathrm{C}), 125.8(\mathrm{CH}), 130.0(\mathrm{CH}), 134.5(\mathrm{CH})$ 168.9 (COOR), 169.6 (COOR).

7-Methoxyphthalide $5 \mathbf{b}^{12}(5.42 \mathrm{~g}, 33.0 \mathrm{mmol})$ was converted to phthalide $\mathbf{6 b}$ by the general procedure. The product was purified by short-column chromatography ($40 \% \mathrm{EtOAc} /$ hexane) to yield a yellow oil, which was triturated with ether to give 5.48 g (70% yield) of $\mathbf{6 b}$ a a white solid: $\mathrm{mp} 64-65^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.73\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ester $\left.\mathrm{OCH}_{3}\right), 4.01\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ether $\left.\mathrm{OCH}_{3}\right), 7.01(\mathrm{~d}, 1 \mathrm{H}, J$ $=9 \mathrm{~Hz}), 7.14(\mathrm{~d}, 1 \mathrm{H}, J=10 \mathrm{~Hz}), 7.67(\mathrm{t}, 1 \mathrm{H}, J=9 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 23.5\left(\mathrm{CH}_{3}\right), 53.1\left(\right.$ ester $\left.\mathrm{OCH}_{3}\right), 56.04$ (ether OCH_{3}), 83.6

[^6](C-3), $111.8(\mathrm{CH}), 113.6(\mathrm{CH}), 136.7(\mathrm{CH}), 137.4$ (C), 151.6 (C), 158.5 (C-7), 167.1 (ArCOOR), 169.6 (COOMe); EI-MS, m / z (relative intensity) 236 ($\mathrm{M}^{\bullet+}, 5$), 177 (100); IR (KBr) 2945, 1770, 1730, 1600, $1480,1435,1375,1330,1290,1260,1220,1130,1040,1005 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{5}: \mathrm{C}, 61.01 ; \mathrm{H}, 5.12$. Found: $\mathrm{C}, 61.18 ; \mathrm{H}, 5.15$.

3,5-Dimethoxybenzyl alcohol was converted to 5,7-dimethoxyphthalide (5c) in 69% yield by the procedure employed by Trost et al. ${ }^{12 \mathrm{a}}$ for preparation of $\mathbf{5 b}$, except benzene ${ }^{12 \mathrm{~b}}$ was used as the solvent; phthalide 5 e was identical in all respects with material prepared by the method of Noire and Franck. ${ }^{20}$ Conversion of $5 \mathrm{c}(0.64 \mathrm{~g}, 3.30 \mathrm{mmol})$ to phthalide 6c gave a pale yellow oil, which was purified by flash column chromatography ${ }^{21}$ ($40 \% \mathrm{EtOAc} /$ hexane) followed by trituration with $\mathrm{Et}_{2} \mathrm{O}$ to give $0.53 \mathrm{~g}(60 \%)$ of 6 c as a white solid: $\mathrm{mp} 126-127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}\right.$, ester $\left.\mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}$ ether OCH_{3}), $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.57(\mathrm{~d}$, $1 \mathrm{H}, J=2 \mathrm{~Hz}$) ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}) $\delta 23.7\left(\mathrm{CH}_{3}\right), 53.5$ (ester OCH_{3}), 56.5 (ether $\left.\mathrm{OCH}_{3}\right), 56.7\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 83.8(\mathrm{C}-3), 99.4(\mathrm{CH})$ 100.4 (CH), 106.1 (C), 154.8 (C), 160.6 (COR), 166.5 (COR), 168.1 (ArCOOR), 170.5 (COOMe); EI-MS, m / z (relative intensity) 266 ($\mathrm{M}^{\bullet+}, 7$), 207 (100); IR (KBr) 1780, 1760, 1620, 1600, 1460, 1335, 1270, $1250,1225,1210,1160,1125,1050,1020 \mathrm{~cm}^{-1}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}$: C, $58.63 ; \mathrm{H}, 5.30$. Found: C, $58.52 ; \mathrm{H}, 5.42$.

3-Methyl-5,7-dimethoxyphthalide (16) was obtained as a byproduct of this reaction: a pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.57(\mathrm{~d}, 3 \mathrm{H}, J$ $\left.=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.96\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 5.39(\mathrm{q}, 1$ $\mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}), 6.50(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.60(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz})$ Phthalide 16 failed to give 6 c on treatment with LDA followed by methyl chloroformate.

Preparation of Anthrones 7. tert-Butyl acetoacetate ($2.08 \mathrm{~g}, 13.2$ mmol) was converted to the dilithium salt by treatment with LDA (26.3 $\mathrm{mmol})$ in THF (100 mL) for 30 min at $0^{\circ} \mathrm{C}$ under N_{2}. Phthalide $6(2.63$ mmol) was added; the mixture was refluxed for 48 h , cooled to $0^{\circ} \mathrm{C}$, and quenched with excess HOAc. The solvent was evaporated in vacuo. The residue was partioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cold dilute HCl ; the organic extract was evaporated in vacuo to give an oil, which was purified by chromatography on siltica gel.

Phthalide $6 \mathrm{a}(2.00 \mathrm{~g}, 9.71 \mathrm{mmol})$ was converted to 7 a by the general procedure. Purification by short-column chromatography ($10 \% \mathrm{Et}-$ OAc/hexane) gave 2.92 g (66%) of 7a as yellow needles: $\mathrm{mp} \mathrm{138-139}$ ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.42\left(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}_{3}{ }^{\prime} \mathrm{s}\right), 1.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.60\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$ - $\mathrm{Bu} \mathrm{CH}_{3}$'s), $3.60\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $7.28-8.18(\mathrm{~m}, 5 \mathrm{H}), 12.92$ (s, 1 H , phenol OH) ${ }^{13} \mathrm{C}^{2} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 28.0\left(3 \mathrm{CH}_{3}\right), 28.2\left(3 \mathrm{CH}_{3}\right)$, $37.8\left(\mathrm{CH}_{3}\right), 40.5\left(\mathrm{CH}_{2}\right), 70.0(\mathrm{C}-10), 81.5(t-$ Bu quaternary C$), 82.7$ (t-Bu quaternary C), 112.7 (C), $118.4(\mathrm{CH}), 123.5(\mathrm{C}), 125.7(\mathrm{CH})$, $126.7(\mathrm{CH}), 127.9(\mathrm{CH}), 128.5(\mathrm{C}), 134.5(\mathrm{CH}), 140.6(\mathrm{C}), 149.1(\mathrm{C})$, 151.1 (C), 159.9 (C-1), 165.8 (ArCOOR), $169.2\left(\mathrm{ArCH}_{2} \mathrm{COOR}\right), 187.7$ (C-9 C=O); EI-MS, m / z (relative intensity) 454 ($\mathrm{M}^{\bullet+}, 30$), 342 (53), 325 (65), 324 (50), 309 (50), 307 (33), 291 (32), 280 (100), 265 (30); IR (KBr) 3390, 2980, 2945, 1735 (br), 1620, 1600, 1570, 1480, 1460 , $1410,1360,1260,1140 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\text {max }} \mathrm{nm}(\epsilon) 355$ (5600), 291 (12900), 269 (9800). Anal. Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{7}: \mathrm{C}, 68.70 ; \mathrm{H}, 6.65$ Found: C, 68.66; H, 6.75.

Phthalide 6b ($1.00 \mathrm{~g}, 4.24 \mathrm{mmol}$) was converted to 7 b by the general procedure. Purification by short-column chromatography (15% EtOAc/hexane) and recrystallization (EtOAc/hexane) gave 1.17 g (57% yield) of 7 b as yellow needles: $\mathrm{mp} 197-198{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.50$ (s, $9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}_{3}$'s), $1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68\left(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s s), 3.68 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.30(\mathrm{~s}$, $1 \mathrm{H}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.52(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 13.26(\mathrm{~s}$, phenol $\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.0\left(t-\mathrm{Bu} \mathrm{CH}_{3}{ }^{\prime} \mathrm{s}\right), 28.2\left(t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s $), 38.2$ $\left(\mathrm{CH}_{3}\right), 40.4\left(\mathrm{CH}_{2}\right), 56.1\left(\mathrm{OCH}_{3}\right), 70.2(\mathrm{C}-10), 81.4(t-\mathrm{Bu}$ quaternary C), 82.4 (t-Bu quaternary C), $111.1(\mathrm{CH}), 113.8(\mathrm{C}), 117.2(\mathrm{C}), 117.3$ $(\mathrm{CH}), 117.4(\mathrm{CH}), 123.6$ (C), $135.6(\mathrm{CH}), 139.3(\mathrm{C}), 149.5(\mathrm{C}), 151.6$ (C), 159.6 (C), 160.5 (C), 165.9 (ArCOOR), 169.4 ($\mathrm{ArCH}_{2} \mathrm{COOR}^{2}$), 187.4 (C-9 C $=\mathrm{O}$); EI-MS, m / z (relative intensity) $484\left(\mathrm{M}^{++}, 8\right), 355$ (28), 354 (34), 312 (28), 310 (35), 178 (100), 177 (72), 164 (29); IR (KBr) 3490, 2980, 1720, 1620, 1590, 1490, 1440, 1400, 1360, 1300, $1260,1200,1140,1060 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max } \mathrm{nm}(\epsilon) 356(10200)$, 291 (12600), 268 (13200). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{8}: \mathrm{C}, 66.91 ; \mathrm{H}$, 6.66. Found: C, 67.08; H, 6.72.

A faster eluting fraction was also isolated and identified as monoadduct 13a, a yellow solid: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) enol form $\delta 1.43$ (s, $9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}_{3}$'s), $1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), 3.22 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), 3.99 (s, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.01(\mathrm{~s}, 1 \mathrm{H}$, vinyl CH$), 6.85(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.22(\mathrm{~d}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.62(\mathrm{t}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 14.9\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}\right.$, enol); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) enol form $\delta 23.97\left(\mathrm{CH}_{3}\right), 27.82\left(t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s $), 45.14$ $\left(\mathrm{CH}_{2}\right), 56.05\left(\mathrm{CH}_{3}\right), 82.27(\mathrm{C}), 85.36(\mathrm{C}), 95.73(\mathrm{CH}), 111.57(\mathrm{C})$,
(20) Noire, P. D.; Franck, R. W. Synthesis 1980, 882.
(21) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
$111.94(\mathrm{CH}), 114.39(\mathrm{CH}), 136.92$ (C), 152.28 (C), 158.52 (C), 166.07 (C), 167.15 (C), 185.73 (C), 192.82 (C); IR (KBr) 2990, 1765, 1730, $1611,1600,1490,1370,1290,1230,1148,1050,1030 \mathrm{~cm}^{-1} ;$ FAB $^{+}$MS, m / z (relative intensity) $363\left(\mathrm{MH}^{+}, 4\right), 308$ (19), 307 (100), 289 (17), 262 (13), 203 (20), 178 (35), 177 (52).

Phthalide $6 \mathrm{c}(0.70 \mathrm{~g}, 2.63 \mathrm{mmol})$ was converted to 7 c in the manner described in the general procedure. Trituration of the crude product with EtOAc gave 0.73 g of 7 c . Flash column chromatography of the mother liquors ($20 \% \mathrm{EtOAc} /$ hexane) gave an additional 0.12 g (63% total) of 7c: mp $214-215^{\circ} \mathrm{C}^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.43\left(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}{ }_{3}\right.$'s), 1.55 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $1.59\left(\mathrm{~s}, 9 \mathrm{H}, t\right.$ - $\mathrm{Bu} \mathrm{CH}_{3}$'s), $3.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 3.59(\mathrm{~s}, 2$ $\mathrm{H}, \mathrm{CH}_{2}$), $3.91\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 3.92\left(\mathrm{~s}, 3, \mathrm{OCH}_{3}\right), 6.42(\mathrm{~d}, 1 \mathrm{H}, J=2.3$ $\mathrm{Hz}), 7.04(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 13.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.02\left(t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s $), 28.18\left(t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s $), 38.39\left(\mathrm{CH}_{3}\right)$, $40.37\left(\mathrm{CH}_{2}\right), 55.67\left(\mathrm{OCH}_{3}\right), 56.22\left(\mathrm{OCH}_{3}\right), 70.93(\mathrm{C}-10), 81.30(t-\mathrm{Bu}$ quaternary C), 82.43 (t-Bu quaternary C), $98.33(\mathrm{CH}), 102.14(\mathrm{CH})$, 111.89 (C), 113.78 (C), 116.93 (CH), 123.73 (C), 139.14 (C), 149.24 (C), 154.79 (C), 159.88 (C), 163.10 (C), 165.43 (C), 166.07 (C), 169.31 (C), 186.45 (CO); EI-MS, m / z (relative intensity) 514 ($\mathrm{M}^{+}, 32$), 402 (27), 385 (59), 384 (100), 369 (21), 367 (21), 351 (21), 341 (50), 304 (27); IR (KBr) 3415, 2980, 1730, 1720, 1620, 1600, 1450, 1365, 1320, $1250,1210,1150,1125,1050 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max } \mathrm{nm}(\epsilon) 356$ (17400), 304 (9800), 274 (13800), 253 (15800). Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{O}_{9}: \mathrm{C}, 65.34 ; \mathrm{H}, 6.66$. Found: $\mathrm{C}, 65.17 ; \mathrm{H}, 6.81$.

A faster eluting fraction (a yellow oil, $\sim 25 \%$) was tentatively identified as monoadduct 13b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ mixture of keto-enol tautomers $\delta 1.42$ (s), 1.46 (s), 1.81 (s), 3.24 (s), 3.72 (br s), 3.87 (s), 3.90 (s), $5.95(\mathrm{~s}), 6.23(\mathrm{~s}), 6.42(\mathrm{~d}, J=2 \mathrm{~Hz}), 6.60(\mathrm{~d}, J=2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ mixture of keto-enol tautomers $\delta 23.83,27.84,28.03,31.11$, $44.98,51.00,55.63,55.82,80.76,81.98,92.60,95.91,98.37,99.64$, $100.00,100.35,112.75,135.02,148.56,157.53,163.89,164.98,165.63$, 165.93, 166.36, 167.61, 185.19, 190.93, 193.42.

Preparation of Anthracenes 8. Anthrone $7(2.2 \mathrm{mmol})$ was treated with 1.5 equiv of triethylsilane ($0.45 \mathrm{~g}, 3.89 \mathrm{mmol}$) and 2.6 equiv of trifluoroacetic acid ($0.67 \mathrm{~g}, 5.83 \mathrm{mmol}$) in 50 mL of refluxing $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 10 h . Solvent was evaporated, and the residue was treated with freshly distilled dimethyl sulfate (4.2 equiv, $1.18 \mathrm{~g}, 9.33 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (5.7 equiv, $1.72 \mathrm{~g}, 12.5 \mathrm{mmol}$) in refluxing acetone (50 mL) with vigorous mechanical stirring for 7 h . The mixture was filtered, concentrated in vacuo, cooled to $0^{\circ} \mathrm{C}$, treated with $\mathrm{Et}_{3} \mathrm{~N}$ (5.7 equiv, $1.52 \mathrm{~g}, 12.5$ mmol), and stirred for 1 h at $20^{\circ} \mathrm{C}$. The reaction mixture was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and cold dilute HCl . The organic extract was concentrated in vacuo, and crude 8 was purified by column chromatog. raphy on silica gel.

Anthrone $7 \mathrm{a}(0.500 \mathrm{~g}, 1.10 \mathrm{mmol})$ was converted to 8 a by the general procedure. Purification by short-column chromatography ($10 \% \mathrm{Et}$ $\mathrm{OAc} /$ hexane) and recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane) gave 0.266 g (63%) of 8a as yellow needles: mp 106-107 ${ }^{\circ} \mathrm{C}$; TLC ($20 \% \mathrm{EtOAc} /$ hexane) $R_{f} 0.30$, bright yellow fluorescence under long wavelength UV light; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$, see also Figure 1) $\delta 3.02$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.88\left(\mathrm{~d}, 2 \mathrm{H}, J=0.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right.$), $3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$ $4.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.52(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{~m}, 1$ H), $7.96(\mathrm{t}, 1 \mathrm{H}, J=0.7 \mathrm{~Hz}, \mathrm{H}-4), 8.26$ (d with additional long-range coupling, $1 \mathrm{H}, J=7.7 \mathrm{~Hz}$), 8.44 (d with additional long-range coupling, $1 \mathrm{H}, J=6.7 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.1\left(\mathrm{CH}_{3}\right), 39.5\left(\mathrm{CH}_{2}\right), 51.8$ (ester OCH_{3}), $52.0\left(\right.$ ester OCH_{3}), 63.49 (ether OCH_{3}), 63.6 (ether OCH_{3}), $117.4(\mathrm{C}), 123.0(\mathrm{CH}), 123.1(\mathrm{CH}), 123.9(\mathrm{C}), 124.4(\mathrm{CH})$, $125.1(\mathrm{CH}), 125.90(\mathrm{C}), 125.93(\mathrm{C}), 126.3(\mathrm{CH}), 127.4(\mathrm{C}), 131.7(\mathrm{C})$, 132.0 (C), 151.0 (COR), 154.5 (COR), 168.1 (ArCOOR), 171.2 ($\mathrm{ArCH}_{2} \mathrm{COOR}$); EI-MS, m / z (relative intensity) $382\left(\mathrm{M}^{\bullet+}, 100\right)$, 351 (32), 339 (34), 324 (37), 307 (39), 290 (38), 279 (39), 262 (49); IR (KBr) $2960,1730,1620,1455,1380,1280,1150,1095,1065,1020 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max } \mathrm{nm}(\epsilon) 373$ (6200), 266 (117500), 225 (14800). Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{6}$: $\mathrm{C}, 69.10 ; \mathrm{H}, 5.80$. Found: $\mathrm{C}, 69.23 ; \mathrm{H}, 5.96$.

Anthrone $\mathbf{7 b}$ was converted to $\mathbf{8 b}$ by the general procedure. Purification by short-column chromatography ($10 \% \mathrm{Et}_{2} \mathrm{O} /$ hexane) and recrystallization ($\mathrm{Et}_{2} \mathrm{O} /$ hexane) gave 0.298 g (66% yield) of $\mathbf{8 b}$ as yellow needles: mp $124-125^{\circ} \mathrm{C}$; TLC ($20 \% \mathrm{EtOAc} /$ hexane) $R_{f} 0.25$, bright yellow under long $\lambda \mathrm{UV}$ light; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.98\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05$, (s, $\left.6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.50(\mathrm{t}$, $1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.90(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 8.02(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.4\left(\mathrm{CH}_{3}\right), 39.7\left(\mathrm{CH}_{2}\right), 52.0\left(\right.$ ester $\left.\mathrm{OCH}_{3}\right), 52.1$ (ester $\left.\mathrm{OCH}_{3}\right), 56.4\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 63.9\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 64.0$ (ether OCH_{3}), $104.2(\mathrm{CH}), 117.3(\mathrm{CH}), 118.6(\mathrm{C}), 119.3(\mathrm{C}), 122.9(\mathrm{CH}), 124.4(\mathrm{C})$, $125.5(\mathrm{C}), 126.2(\mathrm{CH}), 128.1$ (C), 132.8 (C), 134.2 (C), 153.0 (COR), 155.4 (COR), 157.4 (COR), 168.5 (ArCOOR), 171.3 ($\mathrm{ArCH}_{2} \mathrm{COOR}$); EI-MS, m / z (relative intensity) 412 (${ }^{\bullet+}$, 34), 337 (8), 319 (14), 178 (58), 177 (100); IR (KBr) 2960, 1745, 1725, 1610, $1550,1440,1415$, $1360,1320,1310,1255,1230,1190,1145,1110,1025 \mathrm{~cm}^{-1}$; UV
$(\mathrm{MeOH}) \lambda_{\text {max }} \mathrm{nm}(\epsilon) 420(4600), 400(6800), 378$ (8500), 363 (4600), $269(85100), 252(\operatorname{sh} 38900), 231$ (17000). Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{7}$: C, 66.97; H, 5.87. Found: 66.94; H, 6.01 .

Anthrone $7 \mathrm{c}(1.1 \mathrm{~g}, 2.2 \mathrm{mmol})$ was converted to 8 c by the general procedure. Purification by flash column chromatography ($10 \% \mathrm{Et}$ OAc/hexane $\rightarrow 30 \%$) gave $8 \mathrm{c}(0.21 \mathrm{~g}, 22 \%)$ as an oil, which could be crystallized by isothermal evaporation of an $\mathrm{Et}_{2} \mathrm{O}$ solution at room temperature: mp $137-138^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 2.90(\mathrm{~s}, 3 \mathrm{H}$, CH_{3}), $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.90,3.96,3.97,3.98$, $4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}, 5 \times\right), 6.53(\mathrm{~s}, 1 \mathrm{H}, J=2 \mathrm{~Hz}$, aromatic), $6.95(\mathrm{~d}, 1$ $\mathrm{H}, J=2 \mathrm{~Hz}$, aromatic), 7.87 ($\mathrm{s}, 1 \mathrm{H}$, aromatic) ${ }^{13}{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $15.5\left(\mathrm{CH}_{3}\right), 39.8\left(\mathrm{CH}_{2}\right), 51.9\left(\right.$ ester $\left.\mathrm{OCH}_{3}\right), 52.0\left(\right.$ ester $\left.\mathrm{OCH}_{3}\right), 55.1$ (ether OCH_{3}), 56.4 (ether OCH_{3}), 63.8 (ether OCH_{3}), 63.9 (ether $\left.\mathrm{OCH}_{3}\right), 94.1(\mathrm{CH}), 98.9(\mathrm{CH}), 116.2(\mathrm{C}), 117.3(\mathrm{C}), 122.5(\mathrm{C}), 123.2$ (C), 123.5 (C), $128.4(\mathrm{CH}), 133.5$ (C), 134.9 (C), 153.3 (COR), 155.8 (COR), 158.2 (COR), 159.9 (COR), 168.6 (ArCOOR), 171.4 ($\mathrm{ArCH}_{2} \mathrm{COOR}$); EI-MS, m / z (relative intensity) $442\left(\mathrm{M}^{\bullet+}, 100\right)$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2930,1735,1600,1540,1430,1270,1210,1160 \mathrm{~cm}^{-1}$; UV $(\mathrm{MeOH}) \lambda_{\text {max }} \mathrm{nm}(\epsilon) 427$ (5400), 404 (6900), 376 (8200), 353 (5040), 335 (2960), 274 (87000), 244 (25000); HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~m} / \mathrm{z}$ 442.1628, found $m / z 442.1659$. Anal. Calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{8}: \mathrm{C}, 65.15$; H, 5.92. Found: C, $65.40 ; \mathrm{H}, 6.03$.

From an earlier eluting fraction in the purification of $\mathbf{8 c}$, mixed ester 17 was isolated; trituration with cold $\mathrm{Et}_{2} \mathrm{O}$ gave 17 as a yellow solid (0.17 $\mathrm{g}, 16 \%$), which was recrystallized with $\mathrm{Et}_{2} \mathrm{O} /$ hexane $\left(-4{ }^{\circ} \mathrm{C}\right)$: mp $107-108^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.70\left(\mathrm{~s}, 9 \mathrm{H}, t-\mathrm{Bu} \mathrm{CH}_{3}\right.$'s $)$, 3.12 (s, 3 H , aryl CH_{3}), 3.98 (s, $2 \mathrm{H}, \mathrm{CH}_{2}$), $4.13\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.19$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.199\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.202\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.26(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.74(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.17(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 8.08$ $(\mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.99\left(\mathrm{C}-10 \mathrm{CH}_{3}\right), 28.02\left(t-\mathrm{Bu} \mathrm{CH}{ }_{3}{ }^{\prime} \mathrm{s}\right)$, $41.13\left(\mathrm{CH}_{2}\right), 52.17\left(\right.$ ester $\left.\mathrm{OCH}_{3}\right), 55.16\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 56.45$ (ether $\left.\mathrm{OCH}_{3}\right), 63.93$ (ether $\left.\mathrm{OCH}_{3}\right), 63.99\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 81.09(t$ - Bu quaternary C), $93.98(\mathrm{CH}), 98.80(\mathrm{CH}), 116.03(\mathrm{C}), 117.22(\mathrm{C}), 122.35(\mathrm{CH})$, 123.25 (C), 123.78 (C), 129.12 (C), 133.55 (C), 134.78 (C), 153.20 (COR), 155.62 (COR), 158.09 (COR), 158.89 (COR), 168.75 (ArCOOR), 170.39 (ArCH ${ }_{2}$ COOR); EI-MS, m / z (relative intensity) 484 ($\mathrm{M}^{\bullet+}, 54$), 428 (100); IR (KBr) 3440 (br), 2982, 2938, 2835, 1731, 1724, $1610,1565,1449,1407,1362,1310,1252,1204,1145,1063,1038 \mathrm{~cm}^{-1}$; $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } \mathrm{nm}(\epsilon) 430(2920), 405(4300), 374(5700), 354$ (3800), 274 (65000), 237 (31000). Anal. Calcd for $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{O}_{8}: \mathrm{C}$, 66.93; H, 6.66. Found: C, 67.11; H, 6.87 .

Preparation of Anthracene Ester-Acids 15ab from Dimethyl Esters $\mathbf{8 b c}$. A mixture of methyl ester $\mathbf{8 b}(0.28 \mathrm{~g}, 0.70 \mathrm{mmol})$ and $\mathrm{KOH}(0.040$ $\mathrm{g}, 0.70 \mathrm{mmol}$) in methanol (10 mL) and $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ was heated at reflux; the reaction was complete after 8 h . The solvent was evaporated, and the residue was partitioned between cold dilute HCl and EtOAc The EtOAc extract was evaporated to leave ester acid $15 a(0.224 \mathrm{~g}, 85 \%$) after the residue was washed with $\mathrm{Et}_{2} \mathrm{O}: m p 169-171^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.91\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $3.97\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.82(\mathrm{~d}, 1 \mathrm{H}, J=7 \mathrm{~Hz})$, $7.42(\mathrm{dd}, 1 \mathrm{H}, J=9 \mathrm{~Hz}, J=7 \mathrm{~Hz}), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=9 \mathrm{~Hz}), 7.95(\mathrm{~s}$, $1 \mathrm{H}), 8.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{COOH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.4\left(\mathrm{CH}_{3}\right), 39.82$ $\left(\mathrm{CH}_{2}\right), 52.42$ (ester OCH_{3}), 56.39 (ether $\left.\mathrm{OCH}_{3}\right), 63.98$ (ether OCH_{3}), 64.04 (ether OCH_{3}), $104.16(\mathrm{CH}), 117.32(\mathrm{CH}), 118.63(\mathrm{C}), 119.36(\mathrm{C})$, $123.29(\mathrm{CH}), 123.97(\mathrm{C}), 125.76(\mathrm{C}), 126.40(\mathrm{CH}), 127.46(\mathrm{C}), 132.79$ (C), 134.26 (C), 152.98 (COR), 155.86 (COR), 157.43 (COR), 168.99 (COOR), $176.15(\mathrm{COOH})$; EI-MS, m / z (relative intensity) $398\left(\mathrm{M}^{++}\right.$, 100); IR (KBr) 3245 (br), 2912, 1722, 1707, 1616, 1552, 1362, 1240 $\mathrm{cm}^{-\mathrm{t}}$; UV (MeOH) $\lambda_{\text {max }} \mathrm{nm}(\epsilon) 377$ (4400), 267 (88000), 245 (sh , 24000), 225 (11000); HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7} \mathrm{~m} / \mathrm{z} 398.1366$, found $m / z 398.1353$.

The only other materials isolated were starting diester $\mathbf{8 b}$ and the corresponding diacid, which could be converted to $\mathbf{8 b}$ by brief exposure to ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$. On the basis of the recovered starting material and diacid, which could be converted to starting material, the conversion of diester $\mathbf{8 b}$ to ester acid $\mathbf{1 5 a}$ is quantitative.

Dimethyl ester $8 \mathrm{c}(0.123 \mathrm{~g}, 0.28 \mathrm{mmol})$ was converted to the ester acid $\mathbf{1 5 b}$ by the same procedure. After filtration and washing with $\mathrm{Et}_{2} \mathrm{O}$, acid ester $15 \mathrm{~b}(0.084 \mathrm{~g}, 71 \%)$ was isolated as a chartreuse solid, mp 203-205 ${ }^{\circ} \mathrm{C}$. Evaporation of the $\mathrm{Et}_{2} \mathrm{O}$ filtrate gave additional 0.035 g of $\mathbf{1 5 b}$ (100% total): ${ }^{1} \mathrm{H}$ NMR (400 MHz , acetone- d_{6}) $\delta 2.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$), $3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.85\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.90(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.58(\mathrm{~d}, 1 \mathrm{H}$, $J=2.2 \mathrm{~Hz}), 7.06(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, $\mathrm{COOH}) ;{ }^{3} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.57\left(\mathrm{CH}_{3}\right), 39.89\left(\mathrm{CH}_{2}\right), 52.27$ (ester $\left.\mathrm{OCH}_{3}\right), 55.17$ (ether OCH_{3}), 56.44 (ether OCH_{3}), 63.86 (2 ether $\left.\mathrm{OCH}_{3}\right), 94.28(\mathrm{CH}), 97.61(\mathrm{C}), 99.18(\mathrm{CH}), 117.36(\mathrm{C}), 122.72(\mathrm{CH})$, 123.16 (C), 123.29 (C), 127.90 (C), 133.50 (C), 135.10 (C), 153.41 (COR), 156.28 (COR), 158.31 (COR), 158.97 (COR), 169.10 (ArCOOR), $175.08(\mathrm{COOH})$; EI-MS, m / z (relative intensity) $428\left(\mathrm{M}^{\bullet+}\right.$,
100), 413 (18); IR (KBr) 3390 (br), 2950, 1740, 1725, 1635, 1470, 1380, $1238,1182,1067 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\text {max }} \mathrm{nm}(\epsilon) 425(4800), 403$ (6370), 378 (7400), 355 (5100), 335 (3300), 274 (82000), 245 (sh 23000), 235 (sh 20000); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~m} / \mathrm{z} 428.1471$, found $m / z 428.1480$.

Trifluoroacetic Acid Mediated Conversion of tert-Butyl Methy1 Ester 17 to Ester-Acid 15b. Mixed ester $17(0.623 \mathrm{~g}, 1.28 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{~mL})$ and cooled to $0^{\circ} \mathrm{C}$, and TFA (Aldrich, 7 mL) was added. The resulting burgundy solution was stirred at $0^{\circ} \mathrm{C}$ for 3 h , after which solvent evaporation in vacuo left an olive foam. Chromatotron separation ($80 \% \mathrm{EtOAc} /$ hexane) produced $\mathbf{1 5 b}$ as an olive foam (0.322 $\mathrm{g}, 58 \%$), which must be used quickly, before residual TFA causes acidcatalyzed cleavage of the aryl ester. The spectral data for $\mathbf{1 5 b}$ produced in this manner are identical with those for $\mathbf{1 5 b}$ obtained by the alternative base-catalyzed synthesis from dimethyl ester 8c.

Protetrone 9. Anthracene $8 \mathbf{a}(0.310 \mathrm{~g}, 0.813 \mathrm{mmol})$ was converted to its monoanion by addition to 0.812 mmol of LDA in THF (75 mL) at $-78^{\circ} \mathrm{C}$ under N_{2}. The anton was added to 3.25 mmol of the dilithium salt of N-(trimethylsilyl)acetamide, prepared by treatment of 0.426 g (3.25 mmol) of the amide with 6.5 mmol of n-butyllithium in THF for 30 min at $0^{\circ} \mathrm{C}$ under N_{2}. After 8 h at $0^{\circ} \mathrm{C}$ and 8 h at $25^{\circ} \mathrm{C}$, excess HOAc was added to quench the reaction, and the solvent was removed in vacuo. The residue was partitioned between $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cold dilute HCl . The organic extract was evaporated, and the residue was purified by short-column chromatography ($40 \% \mathrm{EtOAc} /$ hexane) to give 74.2 mg (22%) of 9 as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$), $3.99(\mathrm{~s}, 2 \mathrm{H}, \mathrm{ArCH} 2 \mathrm{COOR}), 4.02$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.14\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CO}\right), 6.18\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, 7.48-7.60 (m, 2 H), 7.87 (s, 1 H), 8.18-8.28 (m, 1 H), 8.38-8.49 (m, $1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 14.3\left(\mathrm{CH}_{3}\right), 38.8\left(\mathrm{ArCH}_{2} \mathrm{COOR}\right), 51.0$ $\left(\mathrm{COCH}_{2} \mathrm{CO}\right), 52.1$ (ester OCH_{3}), $63.8\left(2\right.$ ether $\left.\mathrm{OCH}_{3}\right), 117.3(\mathrm{C}), 123.3$ $(\mathrm{CH}), 123.9(\mathrm{CH}), 124.6(\mathrm{CH}), 125.5(\mathrm{CH}), 126.1(\mathrm{C}), 126.2(\mathrm{C}), 127.3$ (C), 126.8 (CH), 129.9 (C), 132.1 (C), 132.3 (C), 151.4 (COR), 155.9 (COR), $169.0\left(\mathrm{CONH}_{2}\right), 172.2(\mathrm{COOR}), 203.0(\mathrm{C}=\mathrm{O}) ;$ EI-MS, m / z (relative intensity) $409\left(\mathrm{M}^{+}, 100\right), 392$ (31), 377 (25) 323 (35); IR (KBr) $3430,3350,2935,1730,1670,1620,1560,1435,1365,1320$, $1250,1160 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\max } \mathrm{nm}(\epsilon) 410$ (2770), 375 (3800), 356 (2800), $267 \mathrm{~nm}(42700)$; HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~m} / \mathrm{z} 409.1535$, found $m / z 409.1525$.

Preparation of Protetrones 14ab. The dilithium salt of N-(trimethylsilyl)acetamide (4 equiv, Aldrich, $0.122 \mathrm{~g}, 0.934 \mathrm{mmol}$, distilled, stored in desiccator) was generated (8 equiv of n - $\mathrm{BuLi}, 1.87 \mathrm{mmol}$) in THF (15 mL) at $0^{\circ} \mathrm{C}$. In a separate flask, anthracene ester-acid 15 (0.233 mmol) in THF (5 mL) was added at $0^{\circ} \mathrm{C}$ to 2 equiv of sodium hydride (Aldrich, $0.019 \mathrm{~g}, 60 \%$ oil dispersion, washed $2 \times 10 \mathrm{~mL}$ pentane) in THF (10 mL). After 30 min at room temperature, the amber solution was transferred by syringe to the principal reaction vessel $\left(0^{\circ} \mathrm{C}\right)$ containing N-(trimethylsilyl)acetamide dianion. A burgundy color resulted; the solution was stirred for 36 h at room temperature. After the mixture was cooled to $0^{\circ} \mathrm{C}, \mathrm{HOAc}(0.14 \mathrm{~g}, 2.33 \mathrm{mmol})$ was added, and solvent was evaporated under vacuum, leaving an oil, which was partitioned between EtOAc and 5% aqueous NaHCO_{3}. The aqueous phase was acidified (pH 2) with dilute HCl and extracted with EtOAc. The organic extract was treated with ethereal $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (7 mmol); excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed after 10 min with HOAc. Solvent was evaporated in vacuo, and the residue was purified (Chromatotron, $50 \% \mathrm{EtOAc} /$ hexane $\rightarrow 80 \%$) to give protetrone 14 .

Protetrone 14a. Condensation of the dianion of N-(trimethylsilyl)acetamide with the sodium salt generated from 15 a ($0.224 \mathrm{~g}, 0.564$ mmol) was performed according to the general procedure. Protetrone 14a was obtained ($0.062 \mathrm{~g}, 25 \%$) as a glass: ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 2.96$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.88\left(\mathrm{br} \mathrm{s}, 5 \mathrm{H}, \mathrm{ArCH}_{2} \mathrm{COOR}\right.$, OCH_{3}), $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CO}\right), 5.52(\mathrm{br} \mathrm{s}, 1$ $\mathrm{H}, \mathrm{NH}), 6.84(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.02(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.44(\mathrm{t}, 1 \mathrm{H}$, $J=8 \mathrm{~Hz}), 7.82(\mathrm{~d}, 1 \mathrm{H}, J=8 \mathrm{~Hz}), 7.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 15.33\left(\mathrm{CH}_{3}\right), 38.84\left(\mathrm{CH}_{2} \mathrm{COOR}\right), 51.21\left(\mathrm{COCH}_{2} \mathrm{CONH}_{2}\right), 52.15$ (ester OCH_{3}), $56.49\left(\right.$ ether $\left.\mathrm{OCH}_{3}\right), 63.95$ (ether OCH_{3}), 64.10 (ether $\left.\mathrm{OCH}_{3}\right), 104.54(\mathrm{CH}), 117.34(\mathrm{CH}), 118.40(\mathrm{C}), 119.10(\mathrm{C}), 123.58$ $(\mathrm{CH}), 125.86(\mathrm{C}), 126.68(\mathrm{CH}), 127.98$ (C), $130.20(\mathrm{C}), 132.77(\mathrm{C})$, 134.69 (C), 153.28 (COR), 156.86 (COR), 157.65 (COR), 168.78 $\left(\mathrm{CONH}_{2}\right), 172.11(\mathrm{COOR}), 203.42(\mathrm{C}=\mathrm{O})$; EI-MS, m / z (relative intensity) $439\left(\mathrm{M}^{++}, 18\right), 422$ (12), 396 (100), 354 (45), 321 (16), 97 (30); HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}(\mathrm{M}-\mathrm{HNCO}) \mathrm{m} / \mathrm{z} 396.1573$, found m / z 396.1541 .

Protetrone 14b. The dilithium salt of N-(trimethylsilyl)acetamide was condensed with the sodium salt generated from anthracene acid ester 15b ($0.100 \mathrm{~g}, 0.233 \mathrm{mmol}$) by this procedure. The resulting crude burgundy oil and solid mixture was purified (Chromatotron, $50 \% \mathrm{EtOAc} /$ hexane $\rightarrow 80 \%$) to give 14 b ($R_{f} 0.2,80 \% \mathrm{EtOAc} /$ hexane, orange under long wavelength UV light) as a pale yellow oil ($0.028 \mathrm{~g}, 26 \%$) as well as
dimethyl ester $8 \mathrm{c}(0.025 \mathrm{~g}, 24 \%)$, which can be quantitatively recycled to ester-acid 15b. On the basis of this recovery, the conversion of 15b to the protected protetrone $\mathbf{1 4 b}$ ts 34% : ${ }^{\mathrm{t}} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 2.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.70\left(\mathrm{~s}, 5 \mathrm{H}, \mathrm{OCH}_{3}, \mathrm{ArCH}_{2} \mathrm{COOR}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 3.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.05\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 4.12 (s, $2 \mathrm{H}, \mathrm{COCH}_{2} \mathrm{CO}$), 5.63 (br s, $\left.1 \mathrm{H}, \mathrm{NH}\right), 6.55(\mathrm{~d}, 1 \mathrm{H}, J=2.2$ $\mathrm{Hz}), 6.95(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}), 7.19(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{NH}), 7.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 15.48\left(\mathrm{CH}_{3}\right), 38.83\left(\mathrm{ArCH} \mathrm{COOR}_{2}\right), 51.02$ (ester $\left.\mathrm{OCH}_{3}\right), 52.19\left(\mathrm{ArCOCH}_{2} \mathrm{CO}\right), 55.18$ (ether OCH_{3}), 56.44 (ether OCH_{3}), 64.03 (ether OCH_{3}), 64.12 (ether OCH_{3}), $94.02(\mathrm{CH}), 98.98$ (CH), 116.20 (C), 116.89 (C), $123.21(\mathrm{CH}), 123.30(\mathrm{C}), 128.13$ (C), 129.22 (C), 133.26 (C), 135.34 (C), 153.39 (COOR), 157.22 (COR), 158.41 (COR), 158.88 (COR), $169.01\left(\mathrm{CONH}_{2}\right), 172.24$ (COOR), $203.43(\mathrm{C}=\mathrm{O})$; EI-MS, m / z (relative intensity) $469\left(\mathrm{M}^{\bullet+}, 52\right)$, 451 (57), 424 (33), 423 (100), 411 (24), 393 (31), 383 (67), 367 (28), 354 (28); IR (KBr) 3355 (br), 2948, 1745, 1710, 1668, 1608, 1428, 1323, 1209, $1163,1038 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } \mathrm{nm}(\epsilon) 430(1180), 386(1930), 331$ (5780), 274 (16200), 239 (19400); HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{8} \mathrm{~m} / \mathrm{z}$ 469.1737, found $m / z 469.1735$.

10-Dehydroxy-6-methylpretetramide (12). A slurry of anthracene 9 ($8.4 \mathrm{mg}, 0.021 \mathrm{mmol}$) in acetic acid (10 mL) was treated with aqueous HBr ($10 \mathrm{~mL}, 49 \%$, freshly distilled from red phosphorus) for 7 h at 40 ${ }^{\circ} \mathrm{C}$ under N_{2}. The mixture was then stored at $4^{\circ} \mathrm{C}$. Crystals deposited and were collected and washed with $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}, \mathrm{Et}_{2} \mathrm{O}$, and EtOAc to yield naphthacene 12 ($5.9 \mathrm{mg}, 82 \%$): mp (vac) $200-300$ ${ }^{\circ} \mathrm{C}$ dec; too insoluble to obtain NMR spectra; EI-MS, m / z (relative intensity) 349 ($\mathrm{M}^{\bullet+}, 55$), 332 (100), 318 (91), 306 (82), 292 (73), 291 (86), 263 (23), 262 (23), 189 (50), 176 (32); IR (KBr) 3470, 3410, 1655, $1595 \mathrm{~cm}^{-1}$; UV (1:9 AcOH/EtOH) $\lambda_{\max } \mathrm{nm}(\epsilon) 435$ (4800), 350 (5200), 315 (6800), 265 (11 200); HRMS caled for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~m} / \mathrm{z} 349.0950$, found $m / z 349.0955$.

6-Methylpretetramide (1). Protetrone 14a ($0.025 \mathrm{~g}, 0.057 \mathrm{mmol}$) was refluxed for 3 h in 2 mL of a 50% mixture of acettc and hydriodic acids (47% aqueous, distilled from red $\mathrm{P}, 123-124^{\circ} \mathrm{C}$, stabilized with 1.5% $\mathrm{H}_{3} \mathrm{PO}_{2}$). After cooling to room temperature, the reaction mixture was poured over 10 g of crushed ice and filtered. The brick red solid was washed with $\mathrm{H}_{2} \mathrm{O}$, acetone, EtOAc, and $\mathrm{Et}_{2} \mathrm{O}$ to give 6-methylpretetramide ($1 ; 10 \mathrm{mg}, 50 \%$): mp (vac) $220-240{ }^{\circ} \mathrm{C}$ dec (lit..$^{\text {aa }} \mathrm{mp}$
$200-300^{\circ} \mathrm{C} \mathrm{dec}$); EI-MS, m / z (relative intensity) $365\left(\mathrm{M}^{\bullet+} 42\right.$), 348 (100); UV [$\left.98 \% \mathrm{H}_{2} \mathrm{SO}_{4} / 0.1 \%(\mathrm{w} / \mathrm{w}) \mathrm{H}_{3} \mathrm{BO}_{3}\right] \lambda_{\max } \mathrm{nm}(\epsilon) 505$ (9600), 403 (11 200), 343 (sh, 3900), 328 (4600), 293 (7200), 275 (8200), 263 (8800) [lit. ${ }^{3} 512$ (15 100), 398 (17650), 339 (16 200), 295 (22900), 276 (23900), 262 (24700), 233 (20200)]; HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{6} \mathrm{~m} / \mathrm{z}$ 365.0876, found $m / z 365.0893$.

8-Hydroxy-6-methylpretetramide (4). A solution of protetrone 14b $(0.014 \mathrm{~g}, 0.030 \mathrm{mmol})$ in acetic acid (0.4 mL) under an argon atmosphere was treated with hydriodic acid ($0.4 \mathrm{~mL}, 47 \%$ aqueous, distilled from red $\mathrm{P}, 123-124^{\circ} \mathrm{C}$, stabilized with $1.5 \% \mathrm{H}_{3} \mathrm{PO}_{2}$) at reflux for 3 h . The orange suspension was poured over crushed ice (15 g), and the precipitate was collected by suction filtration and washed with $\mathrm{H}_{2} \mathrm{O}$ (6 mL), cold acetone (0.5 mL), cold $\mathrm{EtOAc}(2 \mathrm{~mL})$, and $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ to yteld 8 -hydroxy- 6 -methylpretetramide (4) as a brick-orange solid (0.006 $\mathrm{g}, 53 \%$): mp (vac) $330-338{ }^{\circ} \mathrm{C} \mathrm{dec} ;{ }^{1} \mathrm{H}$ NMR tnsuffictently soluble in DMSO- $d_{6} / 1 \% \mathrm{Mg}\left(\mathrm{OCOCD}_{3}\right)_{2}$ to obtain a satisfactory spectrum at 400 MHz ; EI-MS, m / z (relative intensity) 381 ($\mathrm{M}^{\bullet+}, 10$), 364 (26), 339 (31), 338 (100), 324 (39), 323 (95), 309 (24), 295 (21); IR (KBr) 3434 (br), 1726 (w), 1709 (w), 1689 (w), 1655, 1638, 1627, 1609, 1600, 1411, 1400, $1390,1381,1350,1290,1170 \mathrm{~cm}^{-1} ; \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } \mathrm{nm}(\epsilon) 438$ (14700), 326 (17000), 296 (20 100), 280 (20500), 259 (19 500); HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{7} \mathrm{~m} / \mathrm{z} 381.0849$, found $m / z 381.0852$.

Extraction of the aqueous filtrate with EtOAc yielded anthrone 18 as an orange solid ($3.0 \mathrm{mg}, 33 \%$): $300-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR (acetonitrile- d_{3}) δ $1.50\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, J=7 \mathrm{~Hz}\right), 3.63\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.21(\mathrm{q}, 1 \mathrm{H}, \mathrm{C}-10$ $\mathrm{CH}, J=7 \mathrm{~Hz}), 6.27(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=2 \mathrm{~Hz}), 6.75$ $(\mathrm{d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 6.90(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 8.03(\mathrm{~s}, 1 \mathrm{H}$, isolated phenol OH), 12.29 (s, 1 H, H-bonded phenol OH), 12.42 (s, $1 \mathrm{H}, \mathrm{H}-$ bonded phenol OH); EI-MS, m / z (relative intensity) 314 (M+ ${ }^{\bullet+}, 100$), 299 (90), 271 (25), 270 (20), 268 (50), 204 (60); IR (KBr) 3260 (br), $2580,1700,1655,1602,1457,1418,1363,1282,1258,1220,1162 \mathrm{~cm}^{-1}$; UV $\left(\mathrm{CH}_{3} \mathrm{CN}\right) \lambda_{\max } \mathrm{nm}(\epsilon) 429$ (2120), 362 (4540), 270 (5130), 244 (7660), 226 (9820), 198 (20150); HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}_{6} \mathrm{~m} / \mathrm{z}$ 314.0790, found $m / z 314.0786$.

Acknowledgment. We wish to thank Drs. Ian Blatr and Brian Sweetman for mass spectra and the US Public Health Service (Grant GM-12848) for generous financial support.

Stereocontrolled Construction of an Ingenol Prototype Having a Complete Array of Oxygenated and Unsaturated Centers

Leo A. Paquette, ${ }^{*}$ Robert J. Ross, ${ }^{1}$ and James P. Springer ${ }^{\mathbf{2}}$
Contribution from the Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210, and the Merck Institute for Therapeutic Research, Rahway, New Jersey 07065. Received January 22, 1988

Abstract

The keto tetrol 3, a close prototype of ingenol, has been synthesized in highly stereoselective fashion. Starting with β-diketone 9, the allyltic alcohol 13 was ftrst crafted. The stage was thereby set for Sharpless oxidation and tntroduction of the ring A double bond. Subsequent regiospeciftc opening of epoxy alcohol 16 with titanium isopropoxide in the presence of ammontum benzoate followed by acetonide formation deltvered 21 . Once the benzoyloxy group in thts intermediate was transformed into a carbonyl, conversion to 34 was readily accomplished. Selenoxide elimination and adjustment of the oxidation level at two centers followed by removal of the acetontde functionalities delivered 3. This target molecule can be cleanly acylated at its 3- and 3,5-positions with palmitoyl chloride.

Euphorbia, the largest genus (ca. 1600 species) of the famtly Euphorbiaceae (290 genera), ${ }^{3}$ occur as succulent or nonsucculent plants in most parts of the world. Although the lattices of most of these species are widely known to be highly irritating, various parts have nonetheless seen extensive use in folk medicine against

[^7]all kinds of diseases. ${ }^{4}$ The types that grow as weeds have often been held responsible for the potsoning of livestock. ${ }^{5}$ Of special medicinal relevance are the various esters of phorbol (1) and ingenol (2) that are contained therein. ${ }^{6}$ Detailed investigations
(4) (a) Watt, J. M.; Breyer-Brandwijk, M. G. The Medicinal and Poisonous Plants of Southern and Eastern Africa; E. and S. Livingstone: Edinburgh, 1962. (b) Hartwell, J. L. Lloydia 1969, 32, 157. (c) Morton, J. F. In Atlas of Medicinal Plants of Middle America. Bahamas to Yucatan; Thomas, C. C., Ed.; Springfield, IL, 1981.
(5) Forsyth, A. A. British Poisonous Plants; Her Majesty Stationary Office: London, 1968; pp 73-75.

[^0]: (1) McCormick, J. R. D.; Johnson, S.; Sjolander, N. O. J. Am. Chem. Soc 1963, 85, 1692
 (2) (a) Hochstein, F. A.; Stephens, C. R.; Conover, L. H.; Regna, P. P.; Pasternack, R.; Gordon, P. N.; Pilgrim, F. L.; Brunings, K. J.; Woodward, R. B. J. Am. Chem. Soc. 1953, 75, 5455. (b) Green, A.; Wilkinson, R. G. Boothe, J. H. J. Am. Chem. Soc. 1960, 82, 3946. (c) Green, A.; Boothe, J H. J. Am. Chem. Soc. 1960, 82, 3950.

[^1]: (3) Barton, D. H. R.; Magnus, P. D.; Hase, T. J. Chem. Soc. C 1971, 2215.
 (4) Gilbreath, S. G.; Harris, C. M.: Harris. T. M. J. Am. Chem. Soc., preceding paper (paper 1) in this issue.
 (5) Harris, T. M.; Harris. C. M.; Oster, T. A. Brown, L. E.. Jr.; Lee, J Y.-C. J. Am. Chem. Soc., preceding paper (paper 2) in this issue.

[^2]: (6) A preliminary communication describing the synthesis of 6-methylpretetramide has been published: Mahalingam, S.; Kuzma, P. K.; Lee, J. Y.-C.; Harris, T. M. J. Am. Chem. Soc. 1985, I07, 7760.

[^3]: (7) Kozikowski, A. P.; Schmiesing, R. Synth. Commun. 1978, 8. 363.
 (8) (a) Huckin, S. N.; Weiler, L. Tetrahedron Lett. 1972, 2405. (b) Huckin, S. N.; Weiler, L. Can. J. Chem. 1974, 52, 1343.
 (9) (a) Harris, T. M.; Webb, A. D.; Harris, C. M.: Wittek. P. J.: Murray, T. P. J. Am. Chem. Soc. 1976. 98. 6065. (b) Harris, T. M.; Murray, T. P.: Harris, C. M.; Gumulka, M. J. Chem. Soc. Chem. Commun. 1974, 362. (10) Kuzma, P. C.; Brown, L. E.; Harris, T. M. J. Org. Chem. 1984. 49. 2015.

[^4]: (13) Chatterjea, J. N.; Bhakte, C.; Vakula, T. R. J. Ind. Chem. Soc. 1972 49,1161.
 (14) Murray, T. P.; Harris, T. M. J. Am. Chem. Soc. 1972, 94, 8253.

[^5]: (15) McCormick, J. R. D. In Biogenesis of Antibiotic Substances; Vanek, Z., Hostälek, Z., Eds.: Academic: New York, 1965; Chapter 8.
 (16) (a) Lynen, F. Pure Appl. Chem. 1967, 14, 137. (b) Scott, A. 1.: Beadling, L. C.; Geiorgopapadakou, N. H.; Subbarayan, C. R. Bioorg. Chem. 1974, 3, 238.
 (17) (a) Anderson, J. A. Phytochemistry 1986, 25, 103. (b) Franck, B.; Backhaus, H.; Rolf, M. Tetrahedron Lett. 1980, 21, 1185 ; (c) Franck, B.; Bringmann, G.; Flohr, G. Angew. Chem., Int. Ed. Engl. 1980, 19, 460. (d) Anderson, J. A.; Lin, B.-K.; Williams, H. J.; Scott, A. 1. J. Am. Chem. Soc. 1988, $110,1623$.

[^6]: (18) (a) Patel, M.; Gullo, V. P.; Hegde, V. R.; Horan, A. C.; Gentile, F.; Marquez, J. A.; Miller, G. H.; Puar, M. S.; Waitz, J. A. J. Antibiot. 1987, 40. 1408. (b) Patel M.; Gullo, V. P.; Hegde, V. R.; Horan, A. C.; Marquez, J. A.; Vaughan, R.; Puar, M. S.; Miller, G. H.; J. Antibiot. 1987, 40, 1414. (c) Smith, E. B.; Munayyer, H. K.; Ryan, M. J.; Mayles, B. A.; Hegde, V. R.; Miller, G. H. J. Antibiot. 1987, 40, 1419. (d) Cacciapuoti, A.; Moss, E. L., Jr.; Menzel, F., Jr.; Cramer, C. A.; Weiss, W.; Loebenberg, D.; Hare, R. S.; Miller, G. H. J. Antibiot. 1987, 40, 1426.
 (19) Kolosov, M. N.; Gurevich, A. 1.; Shvetsov, Y. B. Isv. Akad. Nauk. SSSR, Otd. Khim. Nauk. 1963, 701; Chem. Abstr. 1963, 59, 8675g.

[^7]: (1) National Science Foundation Graduate Fellow, 1982-1985; Amoco Graduate Fellow, 1985-1986.
 (2) Merck Institute. Author to whom all inquiries regarding the X-ray crystallographic analysis should be addressed.
 (3) Engler, A. Syllabus der Pfanzenfamilien; Nikolassee: Berlin, 1964; Gebr. Borntrager.

